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A few other bits of matrlx notation and facts

AB # BA. Other exceptlons are associated with zero matrices. A zero matrix is
one whose elements are all zero, such as

01, ol

0

0 0 0 00

0 0] 0 0 0}
We ordinarily denote a zero matrix (whatever its size) by 0. It should be clear that
for any matrix A,

=N =M =

0+A=A=A+0, A0=0, and 0A =0,

where in each case 0 is a zero matrix of appropriate size. Thus zero matrices appear
to play a role in the arithmetic of matrices similar to the role of the real number 0 in
ordinary arithmetic.

Recall that an identity matrix is a square matrix I that has ones on its principal
diagonal and zeros elsewhere. Identity matrices play a role in matrix arithmetic
which is strongly analogous to that of the real number 1, for whicha-1=1-a =a
for all values of the real number a. For instance, you can check that

[« allo 2]=lov][e a)=[2 4]

ayy apz2 das 1 0 0O
A= arz) dz2 dz3 and I= 0 12 01,
asy daszz dsj 0 0 1
then AI = IA = A. For instance, the element in the second row and third column
of Al is

Similarly, if

(@21)(0) + (a22)(0) + (a23)(1) = azs.



Recall that the n x n identity matrix is the diagonal matrix

— —

1 00 - 0

010 - 0
[=|0 0 1 -0 (1)

(0 0 0 -+ 1]

having ones on its main diagonal and zeros elsewhere. It is not difficult to deduce
directly from the definition of the matrix product that I acts like an identity for

matrix multiplication:
Al=A and IB=B (2)

if the sizes of A and B are such that the products AI and IB are defined. It is,
nevertheless, instructive to derive the identities in (2) formally from the two basic
facts about matrix multiplication that we state below. First, recall that the notation

A=[a, a, a3 - a,] (3)
expresses the m x n matrix A in terms of its column vectors a;, az, as, ..., a,.
Fact 1 Ax in terms of columns of A
IfA=[a; a» --- a,|andx= (x1,x2,....: x,) is an n-vector, then
AX = x1a; + x2a2 + -+ + X, Q,. 4)

The reason is that when each row vector of A is multiplied by the column vector x,
its jth element is multiplied by x;.

Fact 2 AB in terms of columns of B
If Aisanm x n matrixand B=[b; b, --- b, ]isann x p matrix, then
AB =[Ab; Ab, --- Ab,]. (5)

That is, the jth column of AB is the product of A and the jth column of B. The
reason is that the elements of the jth column of AB are obtained by multiplying the
individual rows of A by the jth column of B.

m The third column of the product AB of the matrices

3 7 5 —
A=|:§ ’(') g] and B=|-2 6 3 6
5 1 =2 =

is



To prove that AI = A, note first that

I=[e1 € - e,,]. (6)

where the jth column vector of I is the jth basic unit vector

0
e = l <« jthentry. (7)
0.
IfA=[a| a, --- a, ],thenFactlyields
Ae;=0-a,+---+1-a;+---+0-a, =a;. (8)
Hence Fact 2 gives
Al=Ale; e - e]
=[Ae; Ae; -+ Ae,|=[a; a - a,];

that is, AI = A. The proof that IB = B is similar. (See Problems 41 and 42.)



